Surface Properties of Wild-Type Rhizobium leguminosarum bv. trifolii Strain 24.2 and Its Derivatives with Different Extracellular Polysaccharide Content

نویسندگان

  • Jolanta Cieśla
  • Magdalena Kopycińska
  • Małgorzata Łukowska
  • Andrzej Bieganowski
  • Monika Janczarek
چکیده

Rhizobium leguminosarum bv. trifolii is a soil bacterium able to establish symbiosis with agriculturally important legumes, i.e., clover plants (Trifolium spp.). Cell surface properties of rhizobia play an essential role in their interaction with both biotic and abiotic surfaces. Physicochemical properties of bacterial cells are underpinned by the chemical composition of their envelope surrounding the cells, and depend on various environmental conditions. In this study, we performed a comprehensive characterization of cell surface properties of a wild-type R. leguminosarum bv. trifolii strain 24.2 and its derivatives producing various levels of exopolysaccharide (EPS), namely, pssA mutant Rt5819 deficient in EPS synthesis, rosR mutant Rt2472 producing diminished amounts of this polysaccharide, and two EPS-overproducing strains, Rt24.2(pBA1) and Rt24.2(pBR1), under different growth conditions (medium type, bacterial culture age, cell viability, and pH). We established that EPS plays an essential role in the electrophoretic mobility of rhizobial cells, and that higher amounts of EPS produced resulted in greater negative electrophoretic mobility and higher acidity (lower pKapp,av) of the bacterial cell surface. From the tested strains, the electrophoretic mobility was lowest in EPS-deficient pssA mutant. Moreover, EPS produced by rhizobial strains resulted not only in an increase of negative surface charge but also in increased hydrophobicity of bacterial cell surface. This was determined by measurements of water contact angle, surface free energy, and free energy of bacterial surface-water-bacterial surface interaction. Electrophoretic mobility of the studied strains was also affected by the structure of the bacterial population (i.e., live/dead cell ratio), medium composition (ionic strength and mono- and divalent cation concentrations), and pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant reve...

متن کامل

Mutation in the pssA Gene Involved in Exopolysaccharide Synthesis Leads to Several Physiological and Symbiotic Defects in Rhizobium leguminosarum bv. trifolii

The symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii 24.2 secretes large amounts of acidic exopolysaccharide (EPS), which plays a crucial role in establishment of effective symbiosis with clover. The biosynthesis of this heteropolymer is conducted by a multi-enzymatic complex located in the bacterial inner membrane. PssA protein, responsible for the addition of glucose-1...

متن کامل

Distribution of O-acetyl groups in the exopolysaccharide synthesized by Rhizobium leguminosarum strains is not determined by the Sym plasmid.

The patterns of O-acetylation of the exopolysaccharide (EPS) from the Sym plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii strain LPR5, R. leguminosarum bv. trifolii strain ANU843 and R. leguminosarum bv. viciae strain 248 were determined by 1H and 13C NMR spectroscopy. Beside a site indicative of the chromosomal background, these strains have one site of O-acetylation in commo...

متن کامل

Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance.

Rhizobium leguminosarum bv. trifolii forms nitrogen-fixing root nodules on the pasture legume Trifolium repens, and T. repens seed is often coated with a compatible R. leguminosarum bv. trifolii strain prior to sowing. However, significant losses in bacterial viability occur during the seed-coating process and during storage of the coated seeds, most likely due to desiccation stress. The disacc...

متن کامل

The Rhizobium Ieguminosarum biovar viciae nod0 gene can enable a nod€ mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch

Sciences, University of East Anglia, Norwich NR4 7TJ, UK 2 School of Biological Analysis of the nodulation characteristics of transposon-induced mutants of Rhizobium leguminosarum bv. viciae revealed that nodO and the closely-linked rhi genes contribute t o nodulation of peas (Pisum sativum) and the vetch Vicia hirsuta. Although mutation of nodO alone had no significant effect on nodulation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016